

Professore di Ostetricia e Ginecologia Università degli Studi di Milano Ospedale Luigi Sacco

in gravidanza e allattamento

Nutrient needs in pregnancy

- Energy (macronutrients) needs increase only slightly during the course of pregnancy. Energy needs during the final months of pregnancy are about 10% higher than before pregnancy
- The needs for certain vitamins and minerals (micronutrients) in pregnancy show a much greater increase

Therefore, pregnant women should pay special attention to the quality of their diet

Cetin et al, Hum Reprod Update 2010

intake - health Poor adherence of the woman to a Mediterranean preconception diet

Generation R Study - Rotterdam

Timmermans et al., 2009

BMJ 2014;348:g1446 doi: 10.1136/bmj.g1446 (Published 4 March 2014)

Maternal dietary patterns and preterm delivery: results from large prospective cohort study

© OPEN ACCESS

66000 women, FFQ in the first 4-5 mts of pregnancy

Linda Englund-Ögge medical doctor¹, Anne Lise Brantsæter senior scientist², Verena Sengpiel medical doctor¹, Margareta Haugen senior scientist², Bryndis Eva Birgisdottir associate professor²³, Ronny Myhre senior scientist⁴, Helle Margrete Meltzer professor², Bo Jacobsson professor¹⁴

- ➡ high scores on the "prudent" dietary pattern were associated with significantly reduced risk of preterm delivery hazard ratio (0.88, 95% confidence interval 0.80 to 0.97).
- → dietary advice to eat a balanced diet including vegetables, fruit, whole grains, and fish and to drink water.

Courtesy of Helle Margrete Meltzer – Norwegian mother and Child Cohort Study

High Prevalence of Vitamin D Deficiency in Native *versus* Migrant Mothers and Newborns in the North of Italy: A Call to Act with a Stronger Prevention Program

What determines vitamin D status?

- Sunlight exposure
 - Degree of skin pigmentation
 - Use of sunscreen
 - Latitude
 - Season
 - Time spent outdoors
 - Protective clothing: type of clothing and degree of body covered
- Body mass and percentage body fat
- Diet
 - intake of fish oil, oily fish,
 - foods with vitamin D fortification
 - Vitamin D supplements

vitamin D in pregnancy

✓ support maternal and fetal bone health increased vitamin D status during pregnancy may enhance bone mineralization in the offspring Bischoff-Ferrari HA 2011

✓ enable the maternal immunological adaptation required to mantain a normal pregnancy

observational and intervention studies have suggested that vitamin D supplementation benefits immune function and the loss of tolerance of <u>preeclampsia</u>

Hypponen E 2011

increased levels are associated with long-term protection against immunological diseases (allergies, type 1 diabetes, asthma)

Bischoff-Ferrari HA 2011

Vitamin D in pregnancy

Health implications

Stage	Serum 25(OH)D, ng/mL	Maternal adverse effects	Newborn infant adverse effects
Severe deficiency	SIPPS DE LA PRINTE DEPURITE DE LA PRINTE DE	Increased risk of preeclampsia, calcium malabsorption, bone loss, poor weight gain, myopathy, higher parathyroid hormone levels	Small for gestational age, neonatal hypocalcemia, hypocalcemic seizures, infantile heart failure, enamel defects, large fontanelle, congenital rickets, rickets of infancy if breastfed
Insufficiency S I P P S	11-32	Bone loss, subclinical myopathy	Neonatal hypocalcemia, <u>reduced</u> bone mineral density, <u>rickets of</u> infancy if breastfed
Adequacy	32-100	Adequate calcium balance, parathyroid hormone levels	None, unless exclusively breastfed

(Mulligan ML et al. Am J Obstet Gynecol May 2010)

Midgestation (15-20 wk) vitamin D deficiency and risk of severe preeclampsia

- Maternal midgestation vitamin D deficiency was associated with increased risk of severe preeclampsia.
- > Vitamin D deficiency may be a modifiable risk factor for severe preeclampsia.

 (Baker AM et al. JCEM 2010)

Plasma 25-Hydroxyvitamin D during pregnancy and Small for Gestational Age (SGA) birth in black and white infants

- N = 1.067 white and 236 black mother-child pairs.
- 25(OH)D levels assessed in 2nd trimester maternal blood

S & EVIJUS,	Second trimester plasma 25(OH)D (n = 1113*)						
Participant characteristics	Severe deficiency Defici		-aliana	Insufficiency		Sufficiency	
, X ³	<25 Amol/L (n = 47)	25 to <50 n	mol/L (n = 314)	50 to <75 nmol/L (n = 543)	≥75 nmol/L (n = 229)	
8 0	n (column %)		S O	Poatri		9	
Race Black	34 (72.3)	78 (24.8)	SIPP	S 35 (10.1)		19 (8.3) P P S	
White	² / ³ 13 (27.6)	236 (75.2)	Liva e S			210 (91.7) ≥ ₹1,70	
Category of/ birthweight-for-gestational age	zā Itali	ana di		axa Italia	na di		
SGA	7 (14.9) 👸 👵	18 (5.7)		22 (4.1)	0-100	6 (2.6)	
Appropriate-for-gestational age	34 (72.3)	245 (78.0)		438 (80.7)	77	195 (85.2)	
Large-for-gestational age	6 (12.8)	51 (16.2)		83 (15.3) S I P	PS	28 (12.2)	

 2^{nd} trimester 25(OH)D levels < 25 nmol/L (10 ng/ml) were associated with higher prevalence of SGA in comparison with 25(OH)D levels \geq 25 nmol/L

(Burris H et al. Annals of epidemiology, June 2012)

Vitamin D during pregnancy and maternal, neonatal and infant health outcomes: a systematic review and meta-analysis

Daily or bolus vitamin D supplementation and risk of low birthweight

- 3 studies (cases = 279; controls = 228)
- OR: 0.40 (I.C. 0.23-0.71)
- Vitamin D supplementation reduces the risk of low birthweight.
- No effect of daily supplementation on SGA (2 trials) and preterm delivery (2 trials).
- > Little evidence from trials exists to evaluate the effect of vitamin D supplementation during pregnancy on maternal, perinatal or infant health outcomes.

(Thorne-Lyman A, Fawzi WW. Pediatric and Perinatal Epidemiology July 2012)

Vitamin D supplementation for women during pregnancy

(6 studies; n = 1.023 women)

Intervention: supplementation with vitamin D alone

Comparison: placebo/no intervention (no vitamins or minerals)

Pre-eclampsia taliana	Ni-A		
	Not estimable	(0 studies)	No trial assessed this outcome caliana
Gestational diabetes	Not estimable	(0 studies)	No trial assessed this outcome
Maternal vitamin D status at term	MD 47.08	414 S 9 ENITUS	MS 6 2
(25-hydroxyvitamin D in nmol/L)	(23.76, 70.39)ana	(4 studies)	low(1,213a na 0/.
Preterm birth	Not estimable	0	No trial assessed this outcome
38 g.	AA B	(0 studies)	A 8 5.
Low birthweight	0.48 SIPPS 3	463	#BOO WAS
	(0.23 to 1.01)	(3 studies)	low 1,2,3

- > Vitamin D supplementation during pregnancy improves women's vitamin D levels at term and seems to protect against low birthweight.
- > However, there is no evidence that it prevents preeclampsia, gestational diabetes or preterm birth.

 (De-Regil LM et al. Feb 2012)

calcium-vitamin D co-supplementation and glycaemic control, inflammation and oxidative stress in gestational diabetes

A randomised placebo-controlled trial. 51 pregnant women with gestational diabetes (Iran). **Placebo vs supplemented** (5.000 UI vit D/twice during the study + 1.000 mg calcium per day). **Six weeks of intervention**.

Table 3 Metabolic profiles, inflammation and biomarkers of oxidative stress at study baseline and after	a 6-week intervention in pregnant women with GDM who received either calcium plus vitamin D
supplements or placebo	

Variable 7	riable Placebo group* (n=28)			Calcium plus vitamin D group (n=28)			pyulud
S 6	Week 0	Wedk 6	Change C	Week 0	Week 6	Change	.0
Calcium (mmol/l)	2.03 f0.32d	2.00±0.38	-0.03,10.34	2:03±0.44	2.20±0.34	0.17±0.48	\$ 0.08
Vitamin D (nmol/l)	49.05.E.34.30	50.80±35.48	1.75±15.36	43.11±28.17	91.30±54.60*	48.19 ±46.64	⊴0.00
Fro (mmovi)	4.42±0.59	4.68±1.06	0.26±0.92	5.14±0.71	4.25±0.64*	-0.89 ± 0.69	-0.00
Insulin (pmol/l)	88,39±50.13	97.56±64.43	9.17±38.50	□77.87±36/51	64.32±28.73	-13.55±35.25	0.02
HOMA-IR	2.93±1.66	3.56±2.69	0.63±2.01	2.93±1.34	2.02±0.89*	-0.91±1.18	0.001
HOMA-B C DAIG	63.32±39.94	65.29±44.84	1.97±28.51	48.45±26.87	47.68±23.87	-0.77 ± 29.66	0.63
QUICKI	0.33±0.03	0.33±0.05	-0.002±0.02	033±0.01	0.35±0.03*	0.02 ± 0.03	0.003
Total cholesterol (mmol/l)	5.11±1.20	5.33±1.47	0.22±0.96	5.10±1.01	5.06±1.20	-0.04 ± 1.01	0.33
Triacylglycerol (mmol/l)	2.09±0.69	20510.682 ~.	-0.04±0.63	2.02±0.78	2.14±0.84 caliana	9-J2±0.58	0.36
LDL-cholesterol (mmol/l)	2.79±0.88	3.05±1.08	0.26±0.74	2.94±0.81	2.71±0.87	-0.23400.79	0.02
HDL-cholesterol (mmol/l)	1.36±0.44 . ©	1.34±0.44	-0.02±0.24	1.22±0.27	1.37±0.33*	0.15±0.25	0.01
Total: HDL-cholesterol ratio	3.93±0.86	4.11±0.80*	0.18±0.37	4.32±1.21	3/83±0.96*	-0.49±1789	0.003
hs-CRP (ng/ml)	6,451.03±3,924.81	6,244.83±4,192.56	\$\frac{1}{206.20\pm4,006.65}\$	7,391.83±4,693.09	7,384,93±3,692.78	-6.90±4006.65	0.83
NO (µmol/l)	54.04±28.65	51.69±28.40	2.35±28.65	60.39±32.56	66.48.129.41	6.09±34.07	0.32
TAC (mmol/I)	724.71±176.51	789.39±176.47*	64.68±128.19	702.08±190.66	751.34±129.29	49.25±140.80	0.67
GSH (µmol/l)	761.69±383.11	714.42±365.83	-47.27±203.63	570.91±97.73	622:05 ± 127.85	5144±131.64	0.03
MDA (µmol/l)	2.69±1.42	3.62±1.83*	0.93±2.00	2.99±0.53	3.051(0,72	0.06±9.66	0.03

^aReceived placebos for calcium daily and for vitamin D twice during the study: at study baseline and on day 21 of intervention

Reduction of fasting plasma glucose (FPG) (p < 0,001), serum insulin levels (p = 0,02) and HOMA-IR (p = 0,001) compared with placebo.

(Asemi Z. June 2014, Diabetologia)

b Received 1,000 mg calcium carbonate daily plus 50,000 U vitamin D₃ twice during the study: at study baseline and on day 21 of intervention

[&]quot;Obtained from repeated measures ANOVA

[&]quot;All values are mean ± SD. Baseline values of FPG, HOMA-B, QUICKI, GSH and MDA were significantly different between the two groups

^{*}Different from Week 0, p≤0.0

Vitamin D supplementation in pregnancy: A systematic review

Nicholas C Harvey^{1,2,*}, Christopher Holroyd^{1,*}, Georgia Ntani¹, Kassim Javaid³, Philip Cooper¹, Rebecca Moon¹, Zoe Cole¹, Tannaze Tinati¹, Keith Godfrey^{1,2}, Elaine Dennison¹, Nicholas J Bishop⁴, Janis Baird¹, and Cyrus Cooper^{1,2,3}

- Five of the eight observational studies relating maternal 25(OH)-vitamin D status to offspring bone outcomes demonstrated positive associations. The one small intervention study identified did not, but the methodology is unclear and a statistically significant result is unlikely based on the sample size.
- Thus observational studies suggest that maternal 25(OH)-vitamin D status may influence offspring bone development, but do not allow public health recommendations to be made. Further high-quality intervention studies are required here, such as the ongoing MAVIDOS Maternal Vitamin D Osteoporosis Study

Health Technol Assess. 2014 July; 18(45): 1–190.

The effect of maternal vitamin D concentration on fetal bone

- n. 357 pregnant women
 - fetal 3D ultrasound and maternal
 25-OH-D levels assessed at 34 wk

- Fetus from vitamin D sufficient mothers have higher femur volume.
- Maternal vitamin D concentrations are significant predictors of femoral volume.

 (loannou C et al. JCEM Nov 2012)

Maternal 25-hydroxyvitamin D level and fetal bone growth assessed by ultrasound

A systematic review

750 pubblications, 5 selected for inclusion in final review

Parameters studied:

humerus length (HL) and femour length (FL) and their Z-scores, femoral volume, femoral distal metaphyseal cross-sectional area (CSA), femoral proximal methaphyseal diameter (PMD), femoral mid-shaft diameter and crown-rump length.

Low maternal 25(OH)D levels may affect fetal bone growth (FL, HL Z-scores), especially in cases of simultaneous low calcium intake.

(Galthen M. et al. 2014 Ultrasound Obstet Gynecol)

PEDIATRICS Volume 133, Number 5, May 2014

Cord-blood 25-hydroxyvitamin D levels and risk of respiratory

infection, wheezing, and asthma by the age of 3 months until 5 years

- N = 922 newborns
- Follow-up at 3 months, until 5 yr
- Median cord-blood 25-OHD = 17.6ng/ml

Low cord-blood levels of 25-OHD were common in newborns and were associated with higher risk of respiratory infections by the age of 3 months.

Cord blood 25-OHD levels were inversely associated with wheeze throughout early childhood but had no association with incident asthma.

Vitamin D exposure during pregnancy, but not early childhood, is associated with risk of childhood wheezing

Cohort study of children (0-5 years). Vitamin D supplement and wheezing data were available for **2.478 children**, and blood samples were available for 1.275 children.

Vitamin D supplementation during pregnancy was associated with reduced odds of wheezing (aOR=0.65; 95% CI: 0.46-0.93), but child vitamin D supplementation and childhood 25(OH)D were not associated with reduced wheezing.

The timing of exposure may be important in understanding the association between vitamin D and childhood wheezing.

Anderson LN et al
Dev Orig Health Dis 2015

Circulating 25-hydroxyvitamin D₃ in pregnancy and infant neuropsychological development

- n. 1.820 mother-infant pairs.
- 25-OH-D levels assessed during
 1st trimester (13.5 ± 2.1 wk).
- Offspring mental and psychomotor scores were assessed at age 14 months by using the Bayley Scales of Infant Development.

Higher circulating concentrations of maternal $25(OH)D_3$ in pregnancy were associated with improved mental and psychomotor development in infants at 14 months.

(Morales et al. Pediatrics Oct 2012)

Vitamin D in Fetal Development: Findings From a Birth Cohort Study Hart PH. et al. 2015

- Cohort of 901 mother-offspring pairs (Western Australia)
- Relationships between maternal vitamin D deficiency at 18 weeks (36% of the pregnant woman, 323 of 901) and long term health outcomes in the offspring were examined

Vitamin D deficiency was associated with: <u>impaired development of fetal lung</u> in 6 years old offspring, <u>neurocognitive difficulties</u> at age 10, increased risk of <u>eating disorders</u> in adolescence, and <u>lower peak bone mass</u> at 20 years.

Summary of the Associations of Organ Development of the Offspring With Maternal Serum 25(OH)D Levels From 5 Separate Studies (N = 901)

P	Organ	Measure	Age at Measure	SIPPSO	Association
) [SVirgo	Z scores ⁶ FVC	6 v	260	Positive
	Lung Brain	Language scores ⁷	5. 10 Valiana		Positive
	Draili	~	ALV CO	743	0
		Eating disorder risk ⁸	14, 17, 20 y	526	Negative
		Autism-Spectrum Quotient9	Early adulthood	406	Negative
	Bone	Peak bone mass ¹⁰	20 y	341	Positive

Vitamin D may have an important, multifaceted role in the development of fetal lungs, brain, and bone.

Vitamin D supplementation in pregnancy

0		
Institute of Medicine	2011	600 UI/day for all
National Recommended Energy and Nutrient Intake Levels	2012	600 UI/day for all
Food and Drug Administration	2015	600 UI/day for all
Endocrine Society	2014	600 UI/day for all (1.500-2.000 at risk)
College of Obstetricians and Gynecologist	2011	1.500 - 2.000 UI/day only if risk factors
World Health Organization	2012	No routine supplementation
Royal College of Obstetricians and Gynaecologists	2014	400 UI/day for all1.000 UI/day if risk factors
	National Recommended Energy and Nutrient Intake Levels Food and Drug Administration Endocrine Society College of Obstetricians and Gynecologist World Health Organization Royal College of Obstetricians and	National Recommended Energy and Nutrient Intake Levels Food and Drug 2015 Administration Endocrine Society 2014 College of Obstetricians and Gynecologist World Health Organization 2012 Royal College of Obstetricians and 2014

Consensus
Vitamina D in età
pediatrica

2015

all pregnant women: 600 UI/day

pregnant women with risk factors: 1.000-2000 UI/day

Vitamin D status: breastfeeding vs formula feeding

46 unweaned infants
(1 – 7 months)

- 25-OH-D levels were significantly different according to supplementation and type of feeding.
- Exclusively breastfed infants are at higher risk of vitamin D deficiency.

Is vitamin D supplementation necessary in healthy full-term breastfed infants? A follow-up study of bone mineralization in healthy full-term infants with and without supplemental vitamin D.

Bagnoli F1, Casucci M, Toti S, Cecchi S, Iurato C, Coriolani G, Tiezzi M, Vispi L.

METHODS:

Bone mineralization was studied by performing ultrasound scans of 73 healthy full-term subjects at the age of 3 months.

The infants were divided into three groups:

group A: breastfed without supplemental vitamin D (BF);

group B: breastfed with supplement of 400 IU/day of vitamin D(BFD);

group C: fed with formula (with and without supplemental vitamin D 400

IU/day) (FF).

RESULTS:

n 75% of subjects of group A mcSOS and mcBTT values were ≤ the 10th percentile, while in group B they were between the 10th and 50th percentile. In FF infants given supplemental vitamin D mcSOS and mcBTT values were between the 25th and 75th percentile

Supplementazione con Vitamina D nella nutrice

- La profilassi nella nutrice deve essere effettuata con 600 UI di vitamina D, anche se con tale dosaggio il latte materno contiene scarse quantità di vitamina D (25-78 UI/I).
- Non è consigliabile utilizzare dosi più elevate per la profilassi nella nutrice (es. 4.000 UI/die) per ottenere livelli più elevati di vitamina D nel latte.
- La profilassi del lattante deve essere attuata con la somministrazione diretta di vitamina D al lattante stesso.

Key points >

- ✓ Encourage women to establish healthy dietary practice
 before conception
- ✓ Folate: routine periconceptional supplementation starting before conception, at least 400 μg/day
- ✓ vitamin D: 600 UI/day in all pregnant and lactating women
- ✓ <u>Individualization of supplementation (1000-2000 UI/day of vit D; iron and iodine)</u>: obesity, adolescents, vegetarians, twins, celiac disease, veiling, specific pregnancy risks......

